If it's not what You are looking for type in the equation solver your own equation and let us solve it.
c^2+4c=12
We move all terms to the left:
c^2+4c-(12)=0
a = 1; b = 4; c = -12;
Δ = b2-4ac
Δ = 42-4·1·(-12)
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-8}{2*1}=\frac{-12}{2} =-6 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+8}{2*1}=\frac{4}{2} =2 $
| 2(b+3)=57 | | 16x+20=77+(7x+6) | | 4(x-2)=3(x+3)-11 | | 2x+x−4=−x−x−x+2−6 | | 2x+3=+9 | | -24-9x=5x+4 | | p^2=12p-20 | | 5x=4.8-3x | | X²+18x+57=12 | | 6^(2x-5)=37 | | P(x)=x6-14x4+49x2-36 | | –8=v4–11 | | 2c+2c+3=1+4c | | 12=9+x2 | | y2–12y=0 | | 7,8,x=7,9,x-1 | | 7b-4+5=6-5+7b | | 6a+9a=45 | | -6+3d=3(d+2) | | 5y+14=6y+3 | | 4x-8=5x-19=54 | | y-77/4=3 | | c2+7=86 | | 3(f-55)=78 | | 4a+9=2(6+2a) | | 6y-3y+12=5(7y-4) | | 6(3x-5)-4=2 | | w+24/9=3 | | -9-6c=-3(3+2c) | | 3d+5+2d-1=10+5d-6 | | 1/4(20x+16)+2x=20 | | 6(2b-6)=4(3b-9) |